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We have developed a procedure for fitting experimental and simulated X-ray reflec-
tivity and diffraction data in order to automate and to quantify the characterization
of thin-film structures. The optimization method employed is a type of genetic algo-
rithm called ‘Differential Evolution’. The method is capable of rapid convergence to
the global minimum of an error function in parameter space even when there are
many local minima in addition to the global minimum. We show how to estimate
the pointwise errors of the optimized parameters, and how to determine whether the
model adequately represents the structure. The procedure is capable of fitting some
tens of adjustable parameters, given suitable data.
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1. Introduction

Inverse problems are commonplace in the physical and engineering sciences. If we
know, or assume, the structure of an object, then we can often calculate many of its
effects. However, the inverse problem of going directly from the effects to determine
their cause is often intractable. Unfortunately, in many cases all we have are the
effects such as certain experimental measurements. In the case of X-ray scattering,
we would require both the amplitude and phase for all scattering angles in order to
determine directly the structure of the scattering object. However, we can usually
measure only the intensity over a limited range of scattering angles. Hence, we must
usually resort to some indirect route, even though this must imply some loss of
uniqueness in the deduced structure.
A typical way to determine the structure of an object from its X-ray scattering

is to construct a model that we hope reasonably describes its structure and from
which we can simulate the X-ray scattering. Using the model, we simulate the X-ray
scattering, for example the X-ray reflectivity or diffraction curve, and calculate the
difference between the experimental and simulated curves using some error function,
E. The model is then adjusted by some optimization method in order to minimize
the difference between the two curves. This procedure is repeated until the difference
between the two curves is judged to be sufficiently small, at which point we accept
the model to be an accurate representation of the structure.
The field of data fitting and parameter optimization has a long and fruitful history.

The earliest successes were for linear problems that possessed a single minimum
in the error function. The mean-squared difference between the experimental and
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simulated data was commonly used as the error function because of its computational
simplicity in the days before fast digital computers. More recent research has focused
on nonlinear problems, and on those with local minima in the error function in
addition to the global minimum. A variety of data-fitting and parameter-optimization
strategies has been developed for such systems (Bevington 1969; Press et al . 1989),
and the following are the most commonly encountered.

(1) Direct search. The parameter space is divided up into small, but finite, regions.
The error function is calculated for each region and the region that gives the
smallest value for E is said to give the best-fit (optimum) parameter values.

(2) Downhill simplex. An initial guess at the parameter values is made. The simplex
(a geometrical construction) then moves in directions that decrease the value
of E. The parameters that yield the smallest value of E in the neighbourhood
of the initial guess are said to be the best-fit parameters.

(3) Levenberg–Marquardt method. An initial guess at the parameter values is made
by the user. The algorithm then combines linearization and gradient searching
of the error function to minimize E in the neighbourhood of the initial guess.
The parameter values giving the smallest value for E are then selected as the
best-fit parameters.

(4) Monte Carlo method. The parameter space is again divided into small regions.
Regions are selected at random and the error function is evaluated. After a
certain number of regions have been chosen, or when E is smaller than some
specified value, the algorithm is stopped. The region with the smallest value
for E is said to yield the best-fit parameter values.

(5) Simulated annealing. This uses the physical principles governing annealing (i.e.
the slow cooling of a liquid so that it forms a crystal) to search for the error
function and obtain the best-fit parameters. There is a finite probability in any
step that the parameters can move in a direction so as to increase E, so the
method does escape from local minima, but slowly.

All of the above methods run into severe difficulties when fitting X-ray scattering
data such as X-ray reflectivity or diffraction curves. The parameter space is simply
too vast for direct searches and becomes uncomputable for all but the simplest cases.
The downhill simplex and Levenberg–Marquardt methods work well for nonlinear
problems because they are guided by the geometry of the error function in parameter
space. However, the initial estimate of the parameter values needs to be very close
to the optimized values if local minima are present, as they will become trapped in
the first local minimum that they encounter. These two methods are therefore only
effective when the parameters are initially contained within the multidimensional
‘well’ of the global minimum, and in most practical cases in X-ray scattering we have
found them to be of little use. The Monte Carlo and simulated annealing methods
do not get trapped in local minima. However, they are very inefficient at searching
the parameter space, since they search it randomly without taking into account the
geometry of the error function. We consider that the practical conditions for an
optimization to be guided by the geometry of the error function are as follows.
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(1) The problems fall into the class of NP-complete problems (Cook 1971). NP
(non-deterministic polynomial) problems are those in which the number of
possible solutions is uncomputably large, perhaps even infinite in principle,
but the solutions can be guessed and verified rapidly.

(2) The error function should not have a constant value over large regions of param-
eter space.

(3) The error function needs to be continuous and single-valued in parameter space.

Condition (1) expresses the requirement that we should recognize the solution
when found, but it is not in itself sufficient. Password-breaking problems are of this
type, but an erroneous password simply gives a wrong answer, i.e. a constant value
in parameter space, hence condition (2) is also necessary. Conditions (2) and (3) also
express the form of the error function. A successful strategy for nonlinear problems
containing local minima will combine both random and guided elements.
Genetic algorithms (GAs), of which there are many classes, offer remarkable poten-

tial in solving such problems and were established in 1975 by John Holland of the
University of Michigan (Holland 1975). Evolutionary algorithms (EAs), one par-
ticular class of GAs, apply some of the known mechanisms of evolution to solve
optimization problems. A number of EAs have been suggested, but they all share
a common conceptual basis of simulating the evolution of parameter vectors by a
repeated process of mutation, reproduction and selection. The algorithms are intrin-
sically parallel, maintaining a population (set) of parameter vectors, and the ability
to explore many different parts of parameter space simultaneously is key to their
success. Simplistically, mutation and diversity find the regions that contain minima
while inheritance searches these regions to find the minimum.
We have employed a new EA called ‘Differential Evolution’ (Storn & Price 1995;

Price & Storn 1997). Through simple mutation, recombination and selection schemes,
parameter vectors with better ‘fitness’ (i.e. parameters that yield a small value of
the error function, E) are found. Mutation is an operation that makes small random
changes to one or more of the population vectors. Mutation is critical for maintaining
diversity in the population of parameter vectors. Recombination is a complementary
operation that creates parameter vectors (offspring) by combining two parameter
vectors from the previous generation (parents) and helps focus the search on promis-
ing regions of the parameter space. Selection guarantees that the ‘fittest’ parameter
vectors will propagate in future generations. EAs differ from the conventional param-
eter optimization methods listed above in several important ways.

(1) EAs optimize the trade-off between exploring new points in the parameter space
(mutation) and exploiting the information discovered thus far (recombination).

(2) EAs operate on many solutions simultaneously (implicit parallelism), gathering
information from current search points to direct the search. Their ability to
maintain multiple solutions concurrently makes EAs less susceptible to the
problems associated with local minima and noise.

(3) EAs are randomized algorithms, in that they use operators whose results are
governed by probability, but they do perform purely random searches (in con-
trast to the Monte Carlo algorithms).
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There can never be an absolute guarantee that any algorithm will find the globally
optimized parameter values in a finite time. However, EAs in general and Differential
Evolution (DE) in particular, do appear to be one of the most efficient algorithms
yet found for this process (Storn & Price 1995).

2. The data-fitting procedure

(a) The Differential Evolution (DE) algorithm

Let us assume that the experimental data contain N measured points (θj , Ij), where
θj is the incidence angle, Ij is the intensity measured at θj and j = 1, 2, . . . , N . Sim-
ulated data I(θj ;p) are computed assuming a structural model with n adjustable
parameters represented by the vector p = [p1, p2, . . . , pn] and are compared with
the experimental data using some error function E(p). Guided by E(p), the DE
algorithm attempts to optimize the parameter vector p starting with an initial pop-
ulation of randomly generated parameter vectors, by a repeated cycle of mutation,
recombination and selection.
A detailed flowchart for the DE algorithm used in this work is shown in figure 1.

Parameters are stored in an array large enough to hold a population (set) of param-
eter vectors P = [p0,p1, . . . ,pm−1]. The size of the population, m, is selected by
the user and in this work we typically use m = 10× n. The parameter vector, p0, is
initialized from the user’s initial guess at the structure, while the remaining m − 1
vectors are initialized by assigning each parameter with a randomly chosen value
from within its allowed range. Once all of the parameter vectors have been initial-
ized, the error function for each pi is evaluated. The parameter vector with the lowest
error is stored in the best-fit vector b = [b1, b2, . . . , bn]. This vector is used to track
the progress of the optimization and is updated whenever an equal or better solution
than the best-so-far vector is found.
The crucial idea in DE is its simple scheme for creating new population members.

Two randomly selected vectors, pa and pb, are chosen from the current population.
The difference vector (pa − pb) is then used to mutate the best-so-far vector, b,
according to the relation

b′ = b+ km(pa − pb), (2.1)

where km denotes the mutation constant. The value of km must be empirically
selected by the user to give fast convergence and in this work we have used km = 0.7.
As the evolving population vectors converge, the differences between them diminish
and, hence, the difference vector remains scaled to an appropriate size.
With b′ in hand, a trial vector t = [t1, t2, . . . , tn], which competes with the vec-

tor p0, is assembled. Starting with the randomly chosen jth parameter, the trial
parameters tj are consecutively loaded (modulo n) from either b′ or p0. A binomial
distribution is used to decide which parameters come from b′ and which come from
p0. A random number chosen from a uniform (0, 1) distribution is compared with a
user-selected recombination constant kr. If the random number is less than or equal
to kr, then tj is loaded with the jth parameter from b′. If the random number is
greater than kr, then the jth parameter of t is loaded from p0. In this work, we have
used kr = 0.5. After n − 1 trials, t gets its final parameter from b′, so that at least
one parameter of t is different from p0. With the vector t assembled, any constraints
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Figure 1. Flowchart for the Differential Evolution (DE) algorithm.

are then taken into account. If the value of the trial parameter tj falls outside the
specified constraints, it is replaced by a randomly selected value according to the
expression

tj = pmin
j + rand(pmax

j − pmin
j ), (2.2)
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where pmin
j and pmax

j denote the minimum and maximum permissible values of the
jth parameter, respectively. If the vector t satisfies the inequality

E(t) � E(p0), (2.3)

then t is selected to replace p0, otherwise p0 propagates to the next generation. The
procedure is then repeated for all remaining parameter vectors in the population P ,
that is pi with i = 1, 2, . . . ,m−1, with a new vector b′ calculated each time. Finally,
the algorithm is iterated over many generations until E(b) fails to decrease, i.e. until
the best-fit vector b has converged on the global minimum of the error function.

(b) The error function

The choice of an appropriate error function is crucial for any data-fitting procedure
regardless of the optimization method used. The DE algorithm gives us a great deal
of flexibility in this choice since we need only choose a continuous function and do not
require the function to have continuous derivatives. When fitting X-ray scattering
data, the error function should have the following additional properties:

(1) a single deep global minimum;

(2) local minima that are much less deep than the global minimum;

(3) be fast and simple to calculate;

(4) have relative insensitivity to the absolute magnitude of the data, since X-ray
scattering data often spans many orders of magnitude; and

(5) does not overemphasize outlying points in the experimental data, since we
expect a Poisson distribution of statistical noise.

Point (4) suggests that a logarithmic function could be appropriate since it lin-
earizes data spanning several orders of magnitude. Point (5) suggests that a robust
error function (Press et al . 1989) will be one that is more suitable than the mean-
squared error function commonly encountered in least-squares fitting. To confirm
these conjectures, we have investigated a number of error functions that have been
applied to fitting problems, as follows.
Mean-square error of the data (MSE),

E(p) =
1

N − 1
N∑

j=1

[Ij − I(θj ;p)]2. (2.4)

Mean-absolute error of the data (MAE),

E(p) =
1

N − 1
N∑

j=1

|Ij − I(θj ;p)|. (2.5)

Mean-square error of the log transformed data (MSElog).

E(p) =
1

N − 1
N∑

j=1

[log Ij − log I(θj ;p)]2. (2.6)
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Mean-absolute error of the log transformed data (MAElog),

E(p) =
1

N − 1
N∑

j=1

| log Ij − log I(θj ;p)|. (2.7)

Tests of these functions with X-ray reflectivity and high-resolution X-ray dif-
fraction data showed that the non-logarithmic error functions (2.4) and (2.5), as
expected, did not effectively fit the data at low intensities. These occur at large
scattering angles and contain information on the smallest length-scales present in
the structure, which are often those at which the X-ray characterization is aimed.
The error functions (2.6) and (2.7) both could cope adequately with such data, but
equation (2.7) is preferred because of its lower sensitivity to outlying data points
(due mainly to statistical noise in the experimental data). Clearly, we cannot assert
that equation (2.7) is the best possible error function but it is very effective, and this
is sufficient. We therefore now use the MAElog function for fitting all such data.
We note, however, that a non-logarithmic function is useful for fitting other types

of X-ray scattering data such as those obtained in powder X-ray diffraction measure-
ments in which the most important information is contained in the higher intensities.
In such cases we prefer the MAE function as it is less sensitive to statistical noise
than the MSE function.

(c) Estimation of convergence and model fitness

We would like the error function to tell us how close the model is to the structure of
the sample being characterized. However, what it gives us is a number that measures
the difference between the experimental and simulated X-ray scattering data. We
can therefore ask the following two questions.

(1) Is there a minimum value of the error function for (noisy) experimental data
and a simulation based on the correct model?

(2) Can we predict it?

If we can answer these questions positively, then we can provide an automatic
method for stopping the data-fitting procedure and can also assess the accuracy of
the model. We have the advantage over many problems in that we know from more
than 20 years of work by numerous researchers that simulating X-ray scattering data
using dynamical theory is extremely accurate. Furthermore, we know that the sta-
tistical noise on X-ray generation and detection is accurately described by a Poisson
distribution.
Let us assume that the structure of the sample is accurately described by the

model, that there are no errors associated with the simulation of the X-ray scattering
and that there are no systematic errors present in the experimental data. Then, in the
absence of statistical noise, E(p) is expected to equal zero, that is the experimental
and simulated data are identical and represented by I(θj ;p). Now, let us introduce
noise into the simulation such that at any point

I ′(θj ;p) = I(θj ;p) + ∆Ij , (2.8)

where ∆Ij is a random deviate selected from a Poisson distribution appropriate for
a given incident intensity, background intensity and measurement time. By setting
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Ij = I ′(θj ;p) in equation (2.7), we may calculate the value of E(p) due to statistical
noise in a single realization of I ′(θj ;p). Repeating this procedure, say, 100 times for
different realizations of the noisy simulation I ′(θj ;p) allows us to estimate the mean,
Emin, and standard deviation, ∆Emin, of the minimum value of E(p) expected in the
presence of statistical noise. Looked at another way, Emin also gives the minimum
error-function value that can be expected if the fitting procedure has converged to
the correct structural model given noisy experimental data. We therefore stop the
fitting procedure when the error function satisfies the inequality

E(p) < Emin + 3∆Emin. (2.9)

If the fitting procedure has converged, in the sense that E(p) is no longer decreas-
ing but does not satisfy equation (2.9), this indicates a deficiency in the model. If,
however, the error function satisfies equation (2.9), there is no need to test sepa-
rately for convergence; this is as good a model as the experimental data will sustain.
There may of course be features in the structure that are not revealed by fitting the
experimental and simulated data, and tests for this will now be discussed.

(d) Estimation of parameter errors

Any data-fitting procedure will result in best-fit parameter values, which can be
reported to as many decimal places as the programmer decides. However, it is essen-
tial to assess the accuracy and reliability of these values. It is a remarkably difficult
and computationally intensive problem to calculate the errors in each parameter
with respect to all other parameters for all but the simplest of problems (Press et al .
1989). We therefore compromise by calculating the pointwise errors of the parame-
ters, taken around their best-fit values. The pointwise error is defined as the change
∆pj of the parameter pj that increases the error function E(p) by a specified amount,
with all other parameters kept constant at their best-fit values. We typically specify
this increase to be 5% of the error-function value after the fitting procedure has con-
verged since it yields easily discernible changes in the simulated curve. The change
∆pj is explicitly calculated for both signs of the deviation from pj , since the error
function can be asymmetric. It is then obvious which parameters are well determined
by the fitting procedure, and which are poorly determined. Since in our programs
a simulation may also be compared with a ‘noisy’ simulation (i.e. statistical noise
included), we may also use this feature to design an experiment that will better
determine the latter parameters.
An interesting consequence of the discussion on estimating the parameter errors

is that it is possible to use the fitting procedure to help ‘discover’ new features in a
structural model. If, for example, an additional layer is suspected, it can be inserted
into the model and the fitting procedure repeated. Comparing the converged error-
function value with equation (2.9) and calculating the pointwise parameter errors
will help determine whether such ‘discoveries’ are appropriate.

(e) Smoothing

A variety of methods for smoothing experimental data have been developed, such
as FFT filtering, N -point averaging and Savitsky–Golay polynomial smoothing. If
any of these methods are applied to experimental data prior to fitting, then a lower
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error function naturally results after the fitting procedure converges. However, we
do not recommend such a treatment for two reasons. First, any smoothing method
will distort the data in some way and thus may change the best-fit parameter values.
Second, smoothing the data voids use of the minimum error-function estimate, which
is very useful in testing the accuracy of the model as well as the goodness-of-fit.

(f ) Performance

The performance of the data-fitting procedure is primarily affected by the following
four factors.

(1) The quality and size of the experimental data. If the experimental data are
noisy or contain a very large number of points, it will take longer to determine
the best-fit parameter values.

(2) The quality of the initial estimates for the parameters. If the initial values
for the parameters are grossly different from the optimized values, the fitting
procedure will take longer to converge.

(3) The search range of the parameter values. If a large search range is specified,
the fitting procedure may take longer to converge to the global minimum of the
error function. However, because the DE algorithm is rather good at finding
the global minimum, without becoming trapped in local minima, it tends not
to falsely converge to incorrect values for the parameters.

(4) The number of adjustable parameters. The ability of the procedure to deter-
mine the optimum parameter values decreases as the number of parameters
increases. In practice we find that up to ten parameters can be optimized in a
matter of minutes, and that several tens of parameters can be optimized during
an overnight run.

We have developed efficient programs for fitting X-ray reflectivity curves and high-
resolution X-ray diffraction rocking-curves based on the fitting procedure presented
in this section. The programs run on personal computers (PCs) under the Microsoft
Windows 95, 98 and NT operating environments. All benchmarks reported in this
work assume that the programs are run on a 300 MHz Pentium II-based PC fitted
with 128 Mb of memory.

3. Experimental

X-ray reflectivity curves and high-resolution X-ray diffraction rocking-curves were
measured using a Bede D1 diffractometer equipped with a Cu-anode sealed X-ray
tube (2.2 kW). The radiation was collimated and monochromated using a single
Si(022) asymmetric channel-cut crystal (CCC) and a 0.05 × 10 mm2 slit placed
ca. 50 mm after the CCC. This arrangement produced an intense beam (greater than
5× 106 cps operating the X-ray tube at 40 kV and 35 mA) of CuKα1 radiation inci-
dent on the sample. A 0.5× 10 mm2 slit was placed immediately before the detector
so as to reduce the background noise. The X-ray reflectivity curves were measured by
performing (θ, 2θ)-scans in which the sample and detector axes are coupled in a ratio
of 1:2. The X-ray diffraction rocking-curves were similarly measured by performing
(θ, 2θ)-scans around the (004) Bragg reflection.
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4. Application to X-ray reflectivity

X-ray reflectivity is a technique used to characterize the surface structure of mate-
rials irrespective of their crystalline perfection. Hence, the technique can be applied
equally well to crystalline, polycrystalline and amorphous materials, and provides
accurate information about the thickness, roughness and density in thin-film struc-
tures (Bowen & Wormington 1993). In this section we describe the structural model
and simulation methods used in our X-ray reflectivity fitting program and give three
examples of its application.

(a) The model and simulation

The simulation method used is taken from the Bede REFS program (Wormington
et al . 1992). We will consider a multilayer on a thick substrate in which the refractive
index of each layer is assumed constant. For X-rays, the refractive index of a material
is slightly less than unity and can be written as

n = 1− re
λ2

2π

∑
a

(fa + f ′
a + f ′′

a )Na, (4.1)

where re is the classical electron radius and λ is the X-ray wavelength. The atomic
scattering factor is denoted by fa and the real and imaginary parts of the dispersion
correction are f ′

a and f ′′
a , respectively. Values for the scattering factor and its correc-

tions are tabulated in the International tables for crystallography (Ibers & Hamilton
1974). The summation is taken over all constituent atoms, a, of number density Na.
The amplitude ratio Xj = Er,j/Et,j of the reflected and transmitted waves at the

bottom of layer j within the multilayer is obtained by solving Maxwell’s equations
and the appropriate boundary conditions. According to Parratt (1954), we may write

Xj =
rj +Xj+1ϕ

2
j+1

1 + rjXj+1ϕ2
j+1

, (4.2)

where rj is the Fresnel coefficient for reflection from the interface between layers j
and j + 1. For a sharp interface, rj is given by the expression

rj =
kz,j − kz,j+1

kz,j + kz,j+1
, (4.3)

where kz,j = 2π/λ(n2
j − cos2 θ)1/2 is the component of the wavevector in layer j per-

pendicular to the surface of the multilayer (i.e. along the z-axis), nj is the refractive
index of the layer and θ is the grazing angle of the incident plane wave. The com-
plex phase factor for wave propagation through the layer thickness, tj , is denoted
by ϕj = exp(ikz,jtj). To include the effects of grading (interdiffusion) and roughness
within this formalism we need only modify the form of the Fresnel coefficient. From
the work of Névot & Croce (1980) an appropriate modification is given by

rj =
kz,j − kz,j+1

kz,j + kz,j+1
exp[−2(kz,jkz,j+1)1/2σj+1], (4.4)

where σj+1 denotes the width of the interface between layers j and j+1 due to both
grading and roughness.
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To calculate the amplitude ratio at the top of the multilayer, X0, equations (4.2)
and (4.4) are applied recursively for all interfaces starting at the substrate (layer
N +1), where XN = rN . The plane-wave reflectivity is then given by R = |X0|2 and
is related to the reflected intensity through the correlation function

I(θ;p) = I0

∫
F (θ′)R(θ′ − θ) dθ′ + Ib, (4.5)

where I0 and Ib denote the incident and background intensity, respectively. Here
F (θ) denotes an instrument function and takes into account the finite divergence
of the incident X-ray beam. We have included both this incident angle θ and the
adjustable parameters p into our notation. Specifically p contains the following:

(1) the incident intensity I0;

(2) the background intensity Ib;

(3) the densities ρj of the layers j = 1, 2, . . . , N ;

(4) the thicknesses tj of the layers j = 1, 2, . . . , N ; and

(5) the widths σj+1 of the interfaces between layers j and j + 1.

Finally, we note that X-ray reflectivity measurements cannot usually distinguish
between layers of high atomic number Z and low mass density, and those with low
Z and high density. We have therefore chosen to fit the density of layers in the
structural model and assume their chemical composition.

(b) Example I. Ta layer on Al2O3

In our first example, we consider a Ta (10 nm) layer deposited on an Al2O3 sub-
strate. Figure 2a shows the measured and simulated X-ray reflectivity curves before
fitting. Below the critical angle of the Ta layer, θc ∼ 0.5◦, the intensity is very high
as a result of total external reflection. Above θc, the reflected intensity decreases
rapidly and prominent oscillations (Kiessig fringes) are clearly visible due to the
large difference in the refractive index of the Ta layer and that of the Al2O3 sub-
strate. The period of the Kiessig fringes is related to the thickness of the Ta layer.
Figure 2b shows the measured curve together with its best-fit simulation. The time
for the fitting procedure to converge was less than two minutes, fitting a total of
nine adjustable parameters. The best-fit parameter values and their uncertainties
are given in table 1. It should be noted that a surface oxide layer (assumed to be
Ta2O5) had to be included in the structural model to obtain close agreement of the
measured and simulated curves.
The parameter values for the simulated curve shown in figure 2a were chosen to

be far from the anticipated best-fit parameter values. This was a deliberate choice in
order to demonstrate that the fitting procedure rapidly converges to the global min-
imum in the error function without getting trapped in local minima. The progress
of the fitting procedure is illustrated in figure 3, which shows the value of the error
function versus the number of generations (iterations of the DE algorithm). Hori-
zontal sections are times during which the fitting procedure is temporarily in a local
minimum. The fitting procedure is seen to have converged to the global minimum
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Figure 2. Comparison of experimental and simulated X-ray reflectivity curves for a Ta layer on
Al2O3, (a) before and (b) after the fitting procedure has converged. The dashed lines represent
the measurements and the solid lines are the simulations.

Table 1. Best-fit parameter values for the Ta layer on Al2O3

layer material t (nm) σ (nm) ρ (g cm−3)

2 Ta2O5 2.70 ± 0.05 0.71 ± 0.03 8.6 ± 0.2
1 Ta 10.49 ± 0.02 0.45 ± 0.02 16.1 ± 0.2

substrate Al2O3 ∞ 0.38 ± 0.02 3.99

after only 1000 generations. Figure 4 shows the value of the error function versus the
thickness of the Ta layer, with all other parameters held at their best-fit values. We
note that the error function has a single deep global minimum and many local min-
ima. Harmonic minima, which occur at half and twice the best-fit Ta layer thickness,
are the deepest of the local minima. The global minimum is ‘shielded’ by fairly large
maxima on either side. This is a typical feature in such curves when the thickness is
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Figure 3. Variation of the error function, E, with the number of DE generations. The fitting
procedure has converged after approximately 1000 generations.
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Figure 4. Variation of the error function, E, with the Ta layer thickness. All other adjustable
parameters in the model are held constant at their best-fit values.

varied, and turns out to be caused by the beating of two sets of oscillations (Kiessig
fringes) in which one period is fixed and the other is variable. This characteristic
shape is very useful for recognizing whether the global minimum is in fact within the
range specified for the thickness parameters in question.

(c) Example II. GaAs/Al0.3Ga0.7As layers on GaAs

For our next example we consider an Al0.3Ga0.7As (50 nm) layer capped with a
GaAs (50 nm) layer grown on a GaAs substrate. Figure 5a shows the measured and
simulated X-ray reflectivity curves prior to fitting. We see that the Kiessig fringes
are far less prominent than in the previous example because the refractive index
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Figure 5. Experimental and simulated X-ray reflectivity curves for an AlxGa1−xAs layer capped
with GaAs on a GaAs substrate, (a) before and (b) after fitting. The dashed lines are the mea-
surements and the solid lines represent the simulations. Experimental data courtesy of Professor
B. K. Tanner (University of Durham, UK).

of Al0.3Ga0.7As is similar to that of GaAs. Furthermore, the periods of the Kiessig
fringes are much smaller than in the previous example because of the thicker layers
considered. The measured curve and best-fit simulation are shown in figure 5b. While
more iterations are required than in the previous example, the fitting procedure still
took less than three minutes to converge and fit 10 adjustable parameters. The best-
fit parameters and their respective uncertainties are given in table 2.
We included an additional layer of GaAs in the structural model and allowed

its density to be fitted within the range 2.66–5.32 g cm−3 (i.e. 50–100% of its bulk
value) to test for the presence of a surface oxide layer. If no surface layer were
present, the density of the top layer would naturally converge to 5.32 g cm−3. How-
ever, the density converged to 3.19 g cm−3, indicating the presence (most likely) of an
oxide. This conjecture is further supported by testing the value of the error function
after convergence. The theoretical minimum error-function value for this example

Phil. Trans. R. Soc. Lond. A (1999)



Characterization of structures from X-ray scattering data 2841

Table 2. Best-fit parameter values for the GaAs/Al0.3Ga0.7As layers on GaAs

layer material t (nm) σ (nm) ρ (g cm−3)

3 GaAs 2.28 ± 0.02 0.57 ± 0.02 3.19 ± 0.05
2 GaAs 50.97 ± 0.01 0.64 ± 0.03 5.32
1 Al0.3Ga0.7As 50.40 ± 0.02 0.5 ± 0.1 4.87

substrate GaAs ∞ 0.7 ± 0.1 5.32
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Figure 6. X-ray reflectivity curves for an Si1−xGex/Si superlattice on an Si substrate. The
dashed line represents the measurements and the solid line is the best-fit simulation.

is Emin = 0.039 ± 0.001 and the converged value is E = 0.043, satisfactorily close.
However, if we omit the surface layer, the error-function value never decreases below
E = 0.2. This example helps to show how the fitting procedure developed in this
work can be used to ‘discover’ layers that have not been intentionally grown.
Finally, we note that detector saturation is evident in the measured data (see fig-

ure 5), but this has clearly not prevented the fitting procedure from converging. The
reason for this is that we treated the incident intensity as an adjustable parameter
and ignored most of the measured data in the region of total external reflection. The
incident intensity is, in effect, determined from the initial slope of the reflectivity
curve. However, for the most accurate characterization of a sample it is important to
reduce this effect experimentally, for example by using an Al absorber to attenuate
the reflected beam at very low incident angles, or a high dynamic-range detector.

(d) Example III. A Si1−xGex/Si superlattice on Si

In our last X-ray reflectivity example, we have applied our fitting procedure to
a superlattice with nominal structure [Si0.5Ge0.5(10 nm)/Si(22 nm)]5 capped with
Si(10 nm), grown by molecular beam epitaxy (MBE) on a Si(001) substrate. The
measured curve and its best-fit simulation are shown in figure 6. The reflectivity
curves contain much fine detail; Bragg peaks and Kiessig fringes between them are
clearly visible. The angular separation of adjacent Bragg peaks is related to the
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Table 3. Best-fit parameter values for the Si1−xGex/Si superlattice on Si

layer material t (nm) σ (nm)

12 SiO2 1.18 ± 0.02 0.19 ± 0.01
11 Si 9.31 ± 0.02 1.19 ± 0.01

. . . 10 Si0.43Ge0.57 9.08 ± 0.01 0.97 ± 0.01
1 . . . Si 22.89 ± 0.01 0.43 ± 0.01

substrate Si ∞ 0.3 ± 0.1

superlattice period while the period of the Kiessig fringes is related to the total
thickness of the structure including the Si capping layer. Despite the reasonably
large number of adjustable parameters involved in this example (a total of 11), the
fitting procedure still managed to converge in ca. 15 min. The best-fit parameters
and their uncertainties are listed in table 3. With the exception of the surface oxide
layer (assumed to be SiO2), which had a fitted density of 1.5±0.1 g cm−3, all density
values were fixed at their bulk values during the fitting. The Ge concentration was
determined precisely by high-resolution X-ray diffraction to be x = 57±5% and also
remained fixed during the fitting.
It is interesting to note that the fitting procedure automatically found an asymme-

try between the SiGe-on-Si and Si-on-SiGe interfaces. The width of the latter inter-
faces was almost twice that of the former. This asymmetry was previously reported
by Powell et al . (1992) and was found by transmission electron microscope (TEM)
images to be due to a ‘wavy’ morphology at the Si-on-SiGe interfaces. It is now
known to be a characteristic growth morphology in compressively strained layers,
such as SiGe grown on Si.

5. Application to X-ray diffraction

High-resolution X-ray diffraction is widely employed to characterize the structure
of semiconductor thin-film structures. The technique provides accurate information
about the composition, quality, strain, thickness and tilt of crystalline layers.

(a) The model and simulation

The simulation method employed in this work is taken from the Bede RADS
program by Bowen et al . (1991) and subsequent developments by Wormington. The
program is based on the Takagi–Taupin dynamical theory of X-ray diffraction. In the
two-beam approximation only the incident and diffracted waves have appreciable
amplitudes and the dynamical equations can be solved analytically for a uniform
layer of specified composition, thickness and strain (Halliwell et al . 1984; Bartels et
al . 1986). In writing the solution, we make use of the complex deviation parameter,
η, defined as

η =
αH + χ0(1− b)

2|b|1/2C(χHχH̄)1/2 . (5.1)

Here, αH represents the angular deviation parameter, b = γ0/γH is the asymmetry
factor, γ0 and γH are the direction cosines of the incident and diffracted waves,
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respectively, χ0, χH and χH̄ represent the electric susceptibilities where H̄ ≡ −H,
and C is the polarization factor, which has a value of 1 and | cos θ| for σ- and π-
polarized waves with θ being the angle of incidence on the reflecting planes. The
angular deviation parameter, αH , is a function of θ and is given by

αH = −4(sin θ − sin θB) sin θB ≈ −2∆θ sin 2θB (5.2)

where ∆θ = θ − θB + ϕ is the angular deviation from the kinematic Bragg angle,
θB, taking into account the angle ϕ between the reflecting planes and the surface
of the crystal. In order to calculate these quantities, the tetragonal distortion of the
unit cell induced by the epitaxy, and modified by any relaxation, must be taken into
account in each layer of the structure.
The electric susceptibilities of a crystalline layer have the following form:

χH = −re
λ2

πV
FH , (5.3)

where re is the classical electron radius, V is the volume of the unit cell and FH is
the structure factor of the unit cell, given by the expression

FH =
∑

a

(fa + f ′
a + if

′′
a )e

−2πi(hxa+kya+lza). (5.4)

Here fa is the scattering factor away from any absorption edges and f ′
a, if

′′
a are

the real and imaginary corrections of the scattering factor, respectively. The atomic
positions of the atoms within the unit cell are denoted (xa, ya, za), and (hkl) rep-
resents the Miller indices of the reflecting planes. The summation is taken over all
constituent atoms, a, within the unit cell.
The amplitude ratio Xt = D0/DH , where D0 and DH denote the amplitudes of

the incident and diffracted waves, at the top of a crystalline layer is related to the
amplitude ratio at the bottom of the layer according to

Xt = η + (η2 − 1)1/2[(S1 + S2)/(S1 − S2)], (5.5)

where

S1,2 = [X0 − η ± (η2 − 1)1/2] exp[∓iT (η2 − 1)1/2] (5.6)

and

T = πC(χHχh̄)
1/2t/(λ|γ0γH |1/2), (5.7)

with t being the thickness of the layer. The amplitude ratio at the top of the substrate
is given by the Darwin–Prins formula, namely

X∞ = η − sgn[Re(η)](η2 − 1). (5.8)

With this result in hand, the amplitude at the top of the first layer is calculated
using equation (5.5). The calculation is then repeated recursively for all of the layers
within the structure until the amplitude ratio at the top of the multilayer, X, is
obtained. The plane-wave reflectivity for the multilayer is given by R = |X|2/b and
for a randomly polarized incident wave is obtained by the arithmetic average of the σ-
and π-reflectivities. The diffracted intensity is then calculated using equation (4.5),
with the vector p containing the following adjustable parameters.
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Table 4. Nominal and best-fit parameter values for the pHEMT structure on GaAs(001)

nominal best-fit︷ ︸︸ ︷ ︷ ︸︸ ︷
layer material x (%) t (nm) x (%) t (nm)

3 GaAs — 35.0 — 38.9 ± 0.3
2 AlxGa1−xAs 24 21.5 35 ± 8 25.3 ± 0.3
1 InxGa1−xAs 22 9.8 21.4 ± 0.1 11.8 ± 0.2

substrate GaAs — ∞ — ∞

(1) The incident intensity I0.

(2) The background intensity Ib.

(3) The composition parameters xj and yj of the layers j = 1, 2, . . . , N . In the case
of quaternary materials, for example InxGa1−xAsyP1−y, a measurement of the
material’s bandgap by a complementary technique such as photoluminescence
is required to determine the composition of the material.

(4) The thicknesses tj of the layers j = 1, 2, . . . , N .

Finally, we note that one difficulty presented when fitting high-resolution X-ray
diffraction rocking-curves is the dominance of the substrate peak; this may be four
or more orders of magnitude greater than the next significant features to be fitted.
It is therefore very important to avoid small errors in the fit around the substrate
peak from dominating the error function. We achieve this in three ways: by using the
MAElog function; by carefully matching the position and intensity of the substrate
peak in all simulations; and by including an appropriate instrument function when
evaluating equation (4.5).

(b) Example I. AlxGa1−xAs layer on GaAs(001)

In our first X-ray diffraction example, we consider a layer of AlxGa1−xAs (500 nm)
with nominal x = 70% grown on a GaAs(001) substrate. Figure 7a shows the mea-
sured and simulated rocking-curves before fitting. The angular scale ∆θ = θ − θB
used in this, and all remaining figures, denotes the offset between the incident angle
and the (004) Bragg angle of the substrate (θB = 33.025◦ for GaAs and CuKα1 radi-
ation). The peak to the left of the dominant substrate peak is due to the AlxGa1−xAs
layer. Also visible are clear oscillations (Pendellösung fringes), the period of which
is related to the thickness of the AlxGa1−xAs layer. The presence of these fringes
indicates that the layer is pseudomorphic and has very good crystalline quality. Fig-
ure 7b shows the measured rocking-curve together with its best-fit simulation. Despite
being started far from the expected structure of the sample, the agreement between
the measured rocking-curve and its best-fit simulation is excellent (convergence time
was less than 3 min). The best-fit parameters yield an AlxGa1−xAs layer of thick-
ness t = 487± 5 nm and composition x = 72.7± 0.2%, which is acceptably close to
the nominal structure. In this very simple case, the composition can be checked by
simple measurement of the angular separation between the layer and substrate peak,
confirming the accuracy of the simulation.
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Figure 7. Comparison of experimental and simulated X-ray diffraction rocking-curves for an
AlxGa1−xAs layer on a GaAs(001) substrate, (a) before and (b) after fitting. The dashed lines
are the measurements and the solid lines represent the simulations.

(c) Example II. A pHEMT structure on GaAs(001)

As a second example we have fitted the X-ray diffraction rocking-curve from a
pseudomorphic high-electron-mobility transistor (pHEMT) structure grown on a
GaAs(001) substrate. The structure is quite complicated (see table 4) but is typical
of device structures that must be routinely characterized in the compound semicon-
ductor industry. The measured rocking-curve, together with simulations before and
after the fitting procedure has converged, is shown in figure 8a, b, respectively. The
substrate peak is clearly visible together with a broad, far less intense, peak to the left
(∆θ ∼ −1.0◦). The latter peak is due to the thin InxGa1−xAs layer in the structure
and its angular position provides an accurate determination of the In concentration.
Also visible are Pendellösung fringes: the short period fringes are related to the total
thickness of the layers within the structure.
The fitting procedure has once again given a very good match between the mea-
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Figure 8. Comparison of experimental and simulated X-ray diffraction rocking-curves for a
pHEMT structure on GaAs(001), (a) before and (b) after fitting. The dashed lines represent
the measurements and the solid lines are the simulations.

sured rocking-curve and the best-fit simulation (the convergence time was ca. 15 min
with a total of seven parameters fitted) despite the complicated structure of the sam-
ple. We note that while most of the parameter values are determined accurately there
is a rather large uncertainty in the composition of the thin AlxGa1−xAs layer. This is
not a deficiency in the fitting method, but a valuable indicator that the experimental
measurement was relatively insensitive to the value of this parameter. In order to
better determine the composition of the AlxGa1−xAs layer additional experiments
and analysis are necessary.

(d) Example III. An AlAs/GaAs superlattice on GaAs(001)

In the final high-resolution X-ray diffraction example, we have applied our fit-
ting strategy to a superlattice with nominal structure [AlAs(90 nm)/GaAs(80 nm)]15
on a GaAs(001) substrate. The measured rocking-curve, together with its best-
fit simulation, is shown in figure 9. The data are visually quite striking and we
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Figure 9. X-ray diffraction rocking-curves for an AlAs/GaAs superlattice on a GaAs(001) sub-
strate. The dashed line represents the measurements and the solid line is the best-fit simulation.
Sample courtesy of Dr D. Braddock (Ovation Semiconductor).

clearly observe satellite peaks associated with the superlattice on either side of
the substrate peak. We find excellent agreement between the measured rocking-
curve and the best-fit simulation both in terms of the positions and the intensi-
ties of the satellite peaks. The best-fit parameters yield a superlattice structure of
[AlAs(88.7 ± 0.1 nm)/GaAs(82.9 ± 0.1 nm)]15. Since the fitted structure is in close
agreement with the nominal structure, we conclude that the growth of this sample
was extremely well controlled.

6. Conclusions

We have demonstrated successful data-fitting and parameter optimization in pre-
viously intractable X-ray scattering problems, using a combination of the DE algo-
rithm, a thoughtful consideration of the error function and a treatment of convergence
and parameter errors. The procedure is robust against nonlinearity, local minima in
the error function, data that span many orders of magnitude and the choice of ini-
tial parameter values. The method is conceptually simple, easy to implement and
rapid in execution. A method is given for estimating errors in the inferred structure,
which provides a way of specifying tolerances in manufactured components such as
thin-film structures. We also provide a method of testing the validity of a particular
structural model within the intrinsic limitations of the data available.
While we have focused on the general area of X-ray scattering, and in particular

X-ray reflectivity and diffraction, the data-fitting method developed in this paper
is general and could be applied to many inverse problems in the physical and engi-
neering sciences. Some examples are ellipsometry, neutron reflectivity and X-ray
fluorescence—indeed, any spectroscopic method for which there is no direct inverse
transform. Certain imaging methods may also be tractable using DE, such as fringe
analysis in optical or X-ray metrology. We believe that the DE algorithm has the
potential to transform many data-fitting and optimization processes in both science
and industry. In the former it can provide more accurate and rapid information;
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in the latter, it can provide the ability to apply powerful and accurate scientific
techniques that had previously been thought too inefficient.

We thank K. V. Price and R. Storn, the originators of the DE algorithm, for their valuable
suggestions during the early stages of this work. We are also grateful to B. K. Tanner for his
assistance in testing our new fitting strategy against conventional methods of fitting X-ray
scattering data, and to the directors of Bede Scientific Instruments Ltd for giving permission
to publish this paper. The use of EAs in software programs for the interpretation of X-ray
scattering data is the subject of a pending US patent application.

References

Bartels, W. J., Hornstra, J. & Lobeek, D. J. W. 1986 X-ray diffraction of multilayers and
superlattices. Acta. Crystallogr. A42, 539–545.

Bevington, P. R. 1969 Data reduction and error analysis for the physical sciences. McGraw-Hill.
Bowen, D. K. & Wormington, M. 1993 Characterization of materials by grazing-incidence X-ray

scattering. Adv. X-ray Analysis 36, 171–184.
Bowen, D. K., Loxley, L., Tanner, B. K., Cooke, M. L. & Capano, M. A. 1991 Principles and

performance of a PC-based program for simulation of double-axis X-ray rocking curves of
thin epitaxial films. Mater. Res. Soc. Symp. Proc. 208, 113–118.

Cook, S. 1971 The complexity of theorem-proving procedures. In Proc. 3rd ACM Symp. Theory
of Computing, pp. 151–158.

Halliwell, M. A. G., Lyons, M. H. & Hill, M. J. 1984 The interpretation of X-ray rocking curves
from III–V semiconductor device structures. J. Cryst. Growth 68, 523–531.

Holland, J. H. 1975 Adaptation in natural and artificial systems, an introductory analysis with
application to biology, control, and artificial intelligence. Ann Arbor, MI: University of Michi-
gan Press.

Ibers, J. A. & Hamilton, W. C. (eds) 1974 International tables for crystallography, vol. IV.
Birmingham: Kynoch.
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